¹H-Detected NMR Relaxation of Methylene Carbons via Stereoselective and Random Fractional Deuteration¹

Diana M. Kushlan and David M. LeMaster*

Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University Evanston, Illinois 60208

Received June 9, 1993

With the availability of 2D ¹H-detected ¹³C relaxation experiments for methine² and methyl³ spin systems, the lack of a corresponding technique for measuring the dynamics of methylene carbons represents one of the major impediments to carrying out complete relaxation analyses of macromolecules. The cross correlation effects between ¹H-¹³C dipolar interactions⁴ cannot be as readily suppressed for methylene resonances as they can for the symmetric I₃S methyl system.³ We report here the use of deuterium enrichment as a means of converting a methylene spin system into a pair of independent ¹H-¹³C and ²H-¹³C dipolar systems for relaxation analysis.

High-power ²H decoupling has recently been applied to ¹Hdetected heteronuclear experiments as a means of narrowing ¹³C resonances in deuterated macromolecules via suppression of the ²H scalar interaction.⁵ For the AIS system of monodeuterated methylene resonances, ²H decoupling suppresses cross correlation between the ¹H-¹³C and ²H-¹³C dipoles. As a result, for both longitudinal^{4a,6} and transverse^{4b,7} ¹³C relaxation, the ¹H-¹³C dipole can be treated as an IS system having a small $^{13}\mathrm{C}\{^{2}\mathrm{H}\}$ NOE perturbation of the steady state magnetization.

To test this approach in the measurement of ¹H-detected ¹³C T_1 and T_2 values for $[2^{-2}H_R, 2^{-13}C]$ glycine-labeled samples of Escherichia coli thioredoxin (MW = 11.7 kDa), previously published experiments⁸ based on a refocused INEPT-refocused reverse INEPT sequence were modified to include a 3-kHz WALTZ-modulated ²H decoupling field from the initial INEPT transfer until acquisition. The resultant relaxation rates are given in Table I.

Since a number of protein NMR studies (e.g., refs 5a and 9) have made use of the more readily accessible random fractional deuteration labeling pattern, analogous measurements were carried out on the [50%U-2H,2-13C]glycine-labeled protein. Relaxation experiments on this sample require suppression of the signal from the diprotio methylene resonances. Use of INEPT refocusing periods set to $1/2J_{\rm HC}$ in the T_1 pulse sequence used above⁸ provides a 25-fold suppression of the I₂S component for a 50 mM [50%U-2H,2-13C]glycine sample. On the other hand, the corresponding pulse sequence for measurement of T_2 gave comparatively little suppression of the diprotio signal. In a

299. (b) Vold, R. L.; Vold, R. R. Prog. Nucl. Magn. Reson. Spectrosc. 1978, 12, 79–133.

(5) (a) Grzesiek, S.; Anglister, J.; Ren, H.; Bax, A. J. Am. Chem. Soc. 1993, 115, 4369-4370. (b) Kushlan, D. M.; LeMaster, D. M. J. Biomol. NMR, in press.

(6) Fagerness, P. E.; Grant, D. M.; Kuhlmann, K. F.; Mayne, C. L.; Parry,
R. B. J. Chem. Phys. 1975, 63, 2524-2532.
(7) Vold, R. R.; Vold, R. L. J. Chem. Phys. 1976, 64, 320-332.
(8) Kay, L. E.; Nicholson, L. K.; Delaglio, F.; Bax, A.; Torchia, D. A. J.

Magn. Reson. 1992, 97, 359-375.

(9) (a) Kalbitzer, H. R.; Leberman, R.; Wittinghofer, A. FEBS Lett. 1985, 180, 40-42. (b) LeMaster, D. M.; Richards, F. M. Biochemistry 1988, 27 142-150. (c) Wang, J.; LeMaster, D. M.; Markley, J. L. Biochemistry 1990, 29, 88-101.

Ĩ	Fable	I.	¹³ C	R_1	and .	R_2	Relaxati	ion	Rates	from	the	$^{2}H_{R}$	-13C	à
(Crossp	beal	cs of	[2-	$^{2}H_{R}$	2-13	C]Glyci	ine-	and					
1	[50%Ľ	J-²H	I,2-1	³ C]	Glyc	ine-	labeled	Ε.	coli T	hiored	loxin	at	14.1	Τ

	R_1 (s ⁻¹) ^a	$R_2 (s^{-1})^b$			
	² H _R ^c	50%- ² H _R	² H _R	50%- ² H _R		
Gly 21	1.23 (1.4%) ^d	1.06 (2.3%) ^e	32.9 (0.5%)	34.1 (0.7%) ^d		
Gly 33	1.22 (2.1%)	1.13 (2.9%)	39.5 (1.0%)	41.3 (4.2%)		
Gly 51	1.14 (2.2%)	1.18 (1.5%)	38.0 (1.9%)	34.0 (3.3%)		
Gly 65	1.05 (1.9%)	1.16 (1.5%)	40.3 (1.1%)	42.0 (2.2%)		
Gly 71	1.10 (0.7%)	1.02 (3.0%)	39.2 (0.6%)	36.9 (1.3%)		
Gly 74	1.21 (1.6%)	1.12 (2.0%)	33.3 (1.1%)	32.7 (1.9%)		
Gly 84	1.11 (0.8%)	1.11 (3.5%)	36.6 (0.6%)	35.4 (2.7%)		
Gly 92	1.17 (1.1%)	1.14 (2.5%)	35.6 (0.8%)	37.4 (3.7%)		
Gly 97	1.15 (1.1%)	1.01 (3.3%)	40.8 (0.7%)	40.1 (1.5%)		
Rav	1.15	1.10	37.4	37.1		
$R_{av}(^{1}\mathrm{H})$	0.95 f	0.91	35.0	34.7		
$R_{av}(^{2}\mathrm{H})$	0.20	0.19	2.4	2.4		

^a R_1 measured at 0.01, 0.15, 0.25, 0.4, 0.6, 0.9, 1.3, and 1.8 s. ^b R_2 measured at 2.35, 7.06, 11.8, 18.8, 28.2, 42.3, and 58.8 ms for the ${}^{2}H_{R}$ sample and 2.33, 4.66, 9.32, 14.0, 21.0, 30.3, 41.9, and 55.9 ms for the [50%U-2H] sample. Chiral deuteration of [2-13C]glycine (Cambridge Isotope Labs) using E. coli cystathionine γ -synthase.¹⁸ ^d Levenberg-Marquardt nonlinear least-squares exponential fitting.¹⁹ Root-meansquare deviations given in parentheses. • Overlap of the ${}^{2}H_{S}$ and ${}^{2}H_{R}$ resonances. / Relaxation contribution of the 1H-13C dipole (and the 2H-¹³C dipole) assuming an isotropic 8-ns correlation time.

modification of this earlier sequence,⁸ the CPMG sequence was introduced after the t_1 period of a double-refocused INEPT sequence, which provides I₂S suppression^{5b,10} as shown in Figure 1. This pulse sequence provides a 10-fold suppression of the I_2S component with the 50 mM [50%U-2H,2-13C]glycine sample. The corresponding R_2 data for the [50%U-²H,2-¹³C]glycinelabeled protein sample are given in Table I. Note that this I_2S suppression should also be feasible for ¹⁵N relaxation measurements of primary amide positions in mixed ${}^{1}H_{2}O/{}^{2}H_{2}O$ solvents.

The close correspondence between the relaxation values for the stereoselective and random fractionally deuterated samples is reinforced by the absence of observable I_2S signals. In addition, the ¹H-detected relaxation data closely fit single exponentials, consistent with the absence of dipole-dipole cross correlation effects.

Since chemical shift anisotropy contributions are negligible at this field strength, 11 with the suppression of the ^{2}H scalar interaction, relaxation is anticipated to be purely dipolar. To interpret these relaxation data, it is necessary to partition the individual contributions of the ${}^{1}H{-}{}^{13}C$ and ${}^{2}H{-}{}^{13}C$ dipoles. In the extreme narrowing limit, both $R_1(^2H^{-13}C)/R_1(^1H^{-13}C)$ and $R_2(^{2}H^{-13}C)/R_2(^{1}H^{-13}C)$ are 0.063, as determined by the S(S + 1) γ^2 factors in the relaxation formula for a single exponential correlation function:

$$R_{1}({}^{2}\text{H}-{}^{13}\text{C})/R_{1}({}^{1}\text{H}-{}^{13}\text{C}) = \frac{1(2)\gamma_{2H}^{2}[J(\omega_{2H}-\omega_{13C})+3J(\omega_{13C})+6J(\omega_{2H}+\omega_{13C})]}{\frac{1}{2}({}^{3}/{}_{2})\gamma_{1H}^{2}[J(\omega_{1H}-\omega_{13C})+3J(\omega_{13C})+6J(\omega_{1H}+\omega_{13C})]}$$

The expression for the R_2 ratio is analogous with the additional spectral density functions $4J(0) + 6J(\omega_{\rm H})$. At 14.1 T, both the R_1 and R_2 ratios increase to approximately 0.13 for correlation times near the various Larmor frequencies, with the R_1 ratio further increasing to 0.22 and the R_2 ratio returning to 0.063 in the slow tumbling limit. It should be noted that for correlation times above 2 ns, the estimated fraction of R_1 and R_2 due to the ¹H-¹³C dipole varies less than 5%. The ratio R_2/R_1 for the backbone resonances is moderately insensitive to limited-scale

0002-7863/93/1515-11026\$04.00/0 © 1993 American Chemical Society

⁽¹⁾ This work was supported by the National Institutes of Health (GM-38779) and the National Science Foundation (DMB-38779)

^{(2) (}a) Nirmala, N. R.; Wagner, G. J. Am. Chem. Soc. 1988, 110, 7557-7558. (b) Kay, L. E.; Torchia, D. A.; Bax, A. Biochemistry 1989, 28, 8972-8979.

^{(3) (}a) Palmer, A. G.; Wright, P. E.; Rance, M. Chem. Phys. Lett. 1991, 185, 41-46. (b) Kay, L. E.; Bull, T. E.; Nicholson, L. K.; Greisinger, C.; Schwalbe, H.; Bax, A.; Torchia, D. A. J. Magn. Reson. 1992, 100, 538-558. (4) (a) Werbelow, L. G.; Grant, D. M. Adv. Magn. Reson. 1977, 9, 189-000 (4) UNIVERSE.

⁽¹⁰⁾ Bax, A.; Ikura, M.; Kay, L. E.; Torchia, D. A.; Tschudin, R. J. Magn. Reson. 1990, 86, 304-318.

⁽¹¹⁾ Palmer, A. G.; Rance, M.; Wright, P. E. J. Am. Chem. Soc. 1991, 113, 4371-4380.

Figure 1. IS spin system selective pulse sequence for measuring T_2 relaxation times. The value of $(2\tau + {}^{13}C_{180^\circ})$ is set to ${}^{1}/{}_{2}J_{HC}$, and that of Δ is set 20% smaller than τ to minimize relaxation losses. δ is set to 250 μ s, while $(2\delta' + {}^{1}H_{180^\circ}$ pulse) = 2δ . N is chosen so that the ${}^{1}H$ pulses in the CPMG sequence are spaced every 5 ms. $\phi_1 = y, -y; \phi_2 = 2(x), 2(-x); \phi_3 = 4(x), 4(-x); \phi_4 = 8(x), 8(-x); acq = x, 2(-x), x, 2(-x, 2(x), -x), x, 2(-x), x$. The phase of the first 180° (X) pulse following the evolution period is inverted every 16 scans. Composite pulses (90°_x, 180°_y, 90°_x) are used for both this X pulse and for the ${}^{1}H$ refocusing pulse in the t_1 period. Quadrature detection is achieved via incrementation of the first heteronuclear 90° pulse according to States et al.²⁰ When applied to deuterated samples, ²H decoupling is applied starting at the first ¹H pulse.

rapid internal motions and can be used to make an initial estimate of a global correlation time 11 of 8 ns. 12

To provide an independent estimate of the ${}^{1}H{-}^{13}C$ dipole contribution to the overall relaxation, directly observed ${}^{13}C$ measurements were carried out on $[2{-}^{13}C]$ glycine-enriched *E. coli* thioredoxin. R_1 and R_2 values per ${}^{1}H$ nucleus of 0.86 and 36.1 s⁻¹ were obtained for Gly 33, the only well resolved resonance in a 1D ${}^{13}C$ spectrum. These values are within 5–10% of the ${}^{1}H$ -detected values, despite the fact that dipole-dipole cross correlation is not suppressed in these direct observe experiments. 13 Since the ${}^{2}H{-}^{13}C$ scalar relaxation affects only the ${}^{13}C$ transverse relaxation time, 14 these equivalent R_2 values indicate that the ${}^{2}H$ scalar relaxation contribution has been effectively suppressed.

Given that the ¹³C line widths are approximately 17 Hz and that the one bond ²H-¹³C isotope shifts are 0.25 ppm¹⁵ (~40 Hz at 14.1 T), the diprotio and monoprotio components are largely resolved. In some cases, INEPT suppression of I₂S systems may prove incomplete due to variation in the ¹H $_{\alpha}$ -¹³C $_{\alpha}$ coupling constants.¹⁶ On the other hand, several factors can contribute to more effective suppression of the I₂S signal in protein studies.

 (13) Werbelow, L. G.; Grant, D. M. J. Chem. Phys. 1975, 63, 4742-4749.
 (14) Abragam, A. The Principles of Nuclear Magnetism; Oxford Univ. Press: Oxford, England, 1961.

(15) Hansen, P. E. Prog. Nucl. Magn. Reson. Spectrosc. 1988, 20, 207-255.

Due the common nonequivalence of the methylene resonances as well as the differential relaxation behavior, the signal from the I₂S component is 4-fold less sensitive than that of the monodeuterated glycine resonances of *E. coli* thioredoxin in HSQC experiments.^{5b} Adjustment of the deuteration level can serve to preferentially suppress the diprotio signal. With a $[50\% U-^2H]$ sample, the proportions of the ¹H₂ and ²H_R species are both 25%, while at 75% deuteration, $[^2H_R]/[^1H_2]$ is 3 and the proportion of ²H_R is 18.75%.

Carbon enrichment will generally be required for protein ${}^{13}C$ relaxation analyses using these approaches. The ${}^{13}C$ homonuclear magnetization exchange present in uniformly labeled samples is incompatible with the relaxation pulse sequences described to date. However, a highly selective alternating carbon enrichment pattern can be obtained for each of the constituent amino acids in appropriate *E. coli* strains.¹⁷ With the combination of these ²H and ¹³C labeling approaches, it should prove feasible to determine the relaxation behavior at nearly every site of a biological macromolecule.

(19) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T. Numerical Recipes, 1st ed.; Cambridge University Press: Cambridge, U.K., 1989.

(20) States, D. J.; Haberkorn, R. A.; Ruben, D. J. J. Magn. Reson. 1982, 48, 286-292.

⁽¹²⁾ The correlation time is concentration dependent, reflecting a mild aggregation at pD 3.9 and 25 °C chosen to mimic the crystallization conditions (Katti, S.; LeMaster, D. M.; Eklund, H. J. Mol. Biol. **1990**, 212, 167–184). The protein concentrations of all samples were carefully matched to 3.5 mM.

^{(16) (}a) Egli, H.; Philipsborn, W. v. Helv. Chim. Acta 1981, 64, 976–988. (b) Vuister, G. W.; Delaglio, F.; Bax, A. J. Am. Chem. Soc. 1992, 114, 9674– 9675. (c) Mierke, D. F.; Grdadolnik, S. G.; Kessler, H. J. Am. Chem. Soc. 1992, 114, 8283–8284.

⁽¹⁷⁾ LeMaster, D. M.; Cronan, J. E. J. Biol. Chem. 1982, 257, 1224-1230.

⁽¹⁸⁾ Homer, R. J.; Kim, M. S.; LeMaster, D. M. Anal. Biochem., in press.